Dieser Spezialisierungskurs rekapituliert nochmals die Grundlagen des maschinellen Lernens, insbesondere des Deep Learning. Im Anschluss wird werden die folgenden Themen behandelt:
- Advanced Feature Engineering Methods
- Anomaly detection
- Autoencoders
- Generative Models
- Variational Autoencoders
- Generative Adversarial Networks
- Explainable Machine Learning
- Reinforcement learning
Themen
Konkret werden in diesem Fortgeschrittenenkurs folgende Themen behandelt:
Konkret werden in diesem Fortgeschrittenenkurs folgende Themen behandelt:
- ML and DL principles (recap)
- Advanced Feature Engineering Methods
- Anomaly detection
- Standardization,Box Plots,Correlation,DB-Scan Clustering,Isolation Forest,Robust Random Cut Forest
- Autoencoders
- feature selection and feature extraction
- Latent variables and spaces
- Image denoising
- Missing value imputation / image impainting
- Domain adaptation
- Generative Models
- Variational Autoencoders
- Generative Adversarial Networks
- Explainable Machine Learning
- XAI methods and definitions
- Partial Dependence Plots
- Individual Conditional Expectation
- Centered Individual Conditional Expectation
- Derivative Individual Conditional Expectation
- Shapley Values
- Local Interpretable Model-agnostic Explanations (LIME)
- Reinforcement learning
- Definitions
- Reinforcement control loop
- Markov Decision process
- Transition Probabilities
- Discounted and Expected Return
- Policies And Value Functions
- The exploration-exploitation dilemma
- Q-Learning
- Deep Reinforcement Learning